Studies on the 4-carbon precursor in the biosynthesis of riboflavin. Purification and properties of L-3,4-dihydroxy-2-butanone-4-phosphate synthase.
نویسندگان
چکیده
The formation of the riboflavin precursor, 6,7-dimethyl-8-ribityllumazine, from 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione requires a phosphorylated 4-carbon intermediate which has been designated as Compound X (Neuberger, G., and Bacher, A. (1985) Biochem. Biophys. Res. Commun. 127, 175-181). The enzyme catalyzing the formation of Compound X has been purified about 600-fold from the cell extract of the flavinogenic yeast Candida guilliermondii by chromatographic procedures. The purified protein appeared homogeneous as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and consisted of a single polypeptide of 24 kDa. The committed substrate of the enzyme was identified as D-ribulose 5-phosphate. The enzyme yields two products which were identified as L-3,4-dihydroxy-2-butanone 4-phosphate and formate by NMR and CD spectroscopy. Mg2+ is required for activity.
منابع مشابه
Biosynthesis of Riboflavin.
The biosynthesis of riboflavin requires 1 equivalent of GTP and 2 equivalents of ribulose phosphate. The first committed reactions of the convergent pathway are catalyzed by GTP hydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase. The initial reaction steps afford 5-amino-6-ribitylaminopyrimidine 5'-phosphate, which needs to be dephosphorylated by a hitherto elusive hydrolase. The de...
متن کاملStructure of 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with divalent metal ions and the substrate ribulose 5-phosphate: implications for the catalytic mechanism.
Skeletal rearrangements of carbohydrates are crucial for many biosynthetic pathways. In riboflavin biosynthesis ribulose 5-phosphate is converted into 3,4-dihydroxy-2-butanone 4-phosphate while its C4 atom is released as formate in a sequence of metal-dependent reactions. Here, we present the crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex ...
متن کاملMetal sites in 3,4-dihydroxy-2-butanone 4-phosphate synthase from Methanococcus jannaschii in complex with the substrate ribulose 5-phosphate.
The crystal structure of Methanococcus jannaschii 3,4-dihydroxy-2-butanone 4-phosphate synthase in complex with the substrate ribulose 5-phosphate at a dimetal centre has recently been determined at 1.7 A resolution. The enzyme converts ribulose 5-phosphate into 3,4-dihydroxy-2-butanone 4-phosphate, while its C4 atom is released as formate. The resulting four-carbon body supplies all eight C at...
متن کاملBiosynthesis of riboflavin. Single turnover kinetic analysis of 6,7-dimethyl-8-ribityllumazine synthase.
6,7-dimethyl-8-ribityllumazine synthase (lumazine synthase) catalyzes the condensation of 5-amino-6-ribitylamino-2,4-(1H,3H)-pyrimidinedione with 3,4-dihydroxy-2-butanone 4-phosphate, affording the riboflavin precursor, 6,7-dimethyl-8-ribityllumazine. Single turnover experiments monitored by multiwavelength photometry were performed with the recombinant lumazine synthase of Bacillus subtilis. M...
متن کاملEvolution of vitamin B2 biosynthesis: 6,7-dimethyl-8-ribityllumazine synthases of Brucella.
The penultimate step in the biosynthesis of riboflavin (vitamin B2) involves the condensation of 3,4-dihydroxy-2-butanone 4-phosphate with 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which is catalyzed by 6,7-dimethyl-8-ribityllumazine synthase (lumazine synthase). Pathogenic Brucella species adapted to an intracellular lifestyle have two genes involved in riboflavin synthesis, ribH1 and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 265 32 شماره
صفحات -
تاریخ انتشار 1990